Text Practice Mode
What is generative AI? | ICON COMPUTER CHHINDWARA | MAIN ROAD GULABARA | APPLY FOR DCA /PGDCA MS OFFICE CPCT ADMISSION |
created Aug 14th, 04:28 by ICON COMPUTER
1
464 words
31 completed
3
Rating visible after 3 or more votes
saving score / loading statistics ...
00:00
Generative AI refers to deep-learning models that can generate high-quality text, images, and other content based on the data they were trained on.
rtificial intelligence has gone through many cycles of hype, but even to skeptics, the release of ChatGPT seems to mark a turning point. OpenAI’s chatbot, powered by its latest large language model, can write poems, tell jokes, and churn out essays that look like a human created them. Prompt ChatGPT with a few words, and out comes love poems in the form of Yelp reviews, or song lyrics in the style of Nick Cave.
The last time generative AI loomed this large, the breakthroughs were in computer vision. Selfies transformed into Renaissance-style portraits and prematurely aged faces filled social media feeds. Five years later, it’s the leap forward in natural language processing, and the ability of large language models to riff on just about any theme, that has seized the popular imagination. And it’s not just language: Generative models can also learn the grammar of software code, molecules, natural images, and a variety of other data types.
The applications for this technology are growing every day, and we’re just starting to explore the possibilities. At IBM Research, we’re working to help our customers use generative models to write high-quality software code faster, discover new molecules, and train trustworthy conversational chatbots grounded on enterprise data. We’re even using generative AI to create synthetic data to build more robust and trustworthy AI models and to stand-in for real data protected by privacy and copyright laws.
As the field continues to evolve, we thought we’d take a step back and explain what we mean by generative AI, how we got here, and how these models work.
The rise of deep generative models
Generative AI refers to deep-learning models that can take raw data — say, all of Wikipedia or the collected works of Rembrandt — and “learn” to generate statistically probable outputs when prompted. At a high level, generative models encode a simplified representation of their training data and draw from it to create a new work that’s similar, but not identical, to the original data.
Generative models have been used for years in statistics to analyze numerical data. The rise of deep learning, however, made it possible to extend them to images, speech, and other complex data types. Among the first class of models to achieve this cross-over feat were variational autoencoders, or VAEs, introduced in 2013. VAEs were the first deep-learning models to be widely used for generating realistic images and speech.
“VAEs opened the floodgates to deep generative modeling by making models easier to scale,” said Akash Srivastava, an expert on generative AI at the MIT-IBM Watson AI Lab. “Much of what we think of today as generative AI started here.”
rtificial intelligence has gone through many cycles of hype, but even to skeptics, the release of ChatGPT seems to mark a turning point. OpenAI’s chatbot, powered by its latest large language model, can write poems, tell jokes, and churn out essays that look like a human created them. Prompt ChatGPT with a few words, and out comes love poems in the form of Yelp reviews, or song lyrics in the style of Nick Cave.
The last time generative AI loomed this large, the breakthroughs were in computer vision. Selfies transformed into Renaissance-style portraits and prematurely aged faces filled social media feeds. Five years later, it’s the leap forward in natural language processing, and the ability of large language models to riff on just about any theme, that has seized the popular imagination. And it’s not just language: Generative models can also learn the grammar of software code, molecules, natural images, and a variety of other data types.
The applications for this technology are growing every day, and we’re just starting to explore the possibilities. At IBM Research, we’re working to help our customers use generative models to write high-quality software code faster, discover new molecules, and train trustworthy conversational chatbots grounded on enterprise data. We’re even using generative AI to create synthetic data to build more robust and trustworthy AI models and to stand-in for real data protected by privacy and copyright laws.
As the field continues to evolve, we thought we’d take a step back and explain what we mean by generative AI, how we got here, and how these models work.
The rise of deep generative models
Generative AI refers to deep-learning models that can take raw data — say, all of Wikipedia or the collected works of Rembrandt — and “learn” to generate statistically probable outputs when prompted. At a high level, generative models encode a simplified representation of their training data and draw from it to create a new work that’s similar, but not identical, to the original data.
Generative models have been used for years in statistics to analyze numerical data. The rise of deep learning, however, made it possible to extend them to images, speech, and other complex data types. Among the first class of models to achieve this cross-over feat were variational autoencoders, or VAEs, introduced in 2013. VAEs were the first deep-learning models to be widely used for generating realistic images and speech.
“VAEs opened the floodgates to deep generative modeling by making models easier to scale,” said Akash Srivastava, an expert on generative AI at the MIT-IBM Watson AI Lab. “Much of what we think of today as generative AI started here.”
