eng
competition

Text Practice Mode

ভাইরাস কীভাবে দেখা যায় (প্রদীব দেব, প্রথম আলো)

created Aug 8th 2021, 10:12 by Asfar Uddin


2


Rating

1006 words
2 completed
00:00
সারা পৃথিবীর মানুষ এখন করোনা ভাইরাসের সংক্রমণের ভয়ে ভীত। ২০১৯ সালের ডিসেম্বর থেকে ২০২০ সালের অক্টোবর পর্যন্ত বিশ্বব্যাপী সাড়ে চার কোটির বেশি মানুষ করোনা ভাইরাসের সংক্রমণের শিকার হয়েছে। প্রায় বারো লক্ষ মানুষ প্রাণ হারিয়েছে এই ভাইরাসে আক্রান্ত হয়ে। এই সংখ্যা এখনো বাড়ছে। ভাইরাস সংক্রমণের হাত থেকে মানুষকে বাঁচানোর জন্য কত ধরনের চেষ্টা করতে হচ্ছে—মানুষের দৈনন্দিন স্বাভাবিক চলাচল বন্ধ করতে হচ্ছে, সামাজিক মেলামেশা বন্ধ করতে হচ্ছে, শহর গ্রাম জনপদ লকডাউন করতে হচ্ছে। অনেক মানুষ এখনো বুঝতে পারছে না ভাইরাস আসলে কীভাবে সংক্রমিত হতে পারে। খালি চোখে ভাইরাস দেখা গেলে এই সমস্যা হতো না। অদৃশ্য শত্রুর বিরুদ্ধে যুদ্ধ করতে হচ্ছে বলেই এত সমস্যা হচ্ছে।
ভাইরাসের বিরুদ্ধে মানুষের যুদ্ধ নতুন নয়। ১৮৮৯-৯০ সালে ইনফ্লুয়েঞ্জা ভাইরাসে প্রায় দশ লক্ষ মানুষ মারা গিয়েছিল। ১৯১৮ সালে স্প্যানিশ ফ্লুতে আক্রান্ত হয়েছিল প্রায় ৫০ কোটি মানুষ, যার মধ্যে প্রায় কোটি মানুষ প্রাণ হারিয়েছে। ১৯৫৬-৫৮ সালে চীনে আরেক ধরনের ইনফ্লুয়েঞ্জা ভাইরাসের প্রকোপ ঘটে। প্রায় ২০ লক্ষ মানুষ মারা গিয়েছিল সেই সময়। ১৯৬৮ সালে হংকংয়ে উদ্ভুত হয় আরেক ধরনের ফ্লু ভাইরাস। সেই ভাইরাসে আক্রান্ত হয়ে মারা যায় দশ লক্ষেরও বেশি মানুষ। ১৯৭৬ সালে প্রথম বারের মত এইচআইভি এইডস ভাইরাসের অস্তিত্ব ধরা পড়ে। পরবর্তী বছরগুলোতে এপর্যন্ত প্রায় সাড়ে তিন কোটি মানুষ মারা গেছে এইডসে আক্রান্ত হয়ে। ১৯৬৫ সালের দিকে প্রথম বারের মত করোনা ভাইরাস ধরা পড়ে। বর্তমানের নভেল করোনা ভাইরাসসহ সাত ধরনের হিউম্যান করোনা ভাইরাস শনাক্ত করা হয়েছে—যা মানুষের শরীরে বিস্তার লাভ করে। এদের মধ্যে আছে মিডল ইস্ট রেসপিরেটরি সিনড্রোম বা মার্স-করোনা ভাইরাস, সিভিয়ার একিউট রেসিপিরেটরি সিনড্রোম বা সার্স-করোনা ভাইরাস, এবং বর্তমান সার্স-করোনা ভাইরাস-২ বা SARS-CoV-2। এই ভাইরাসগুলোর আকৃতি অনেকটা মুকুটের মতো। মুকুটের গ্রিক প্রতিশব্দ হচ্ছে করোনা। সেখান থেকেই এদের নাম হয়েছে করোনা। এখন প্রশ্ন হচ্ছে এই ভাইরাসগুলো কীভাবে দেখা যায়?
বিজ্ঞানীরা ভাইরাসের গঠন সংক্রান্ত গবেষণা শুরু করেছেন উনবিংশ শতাব্দীর শেষের দিকে। অনুবীক্ষণ যন্ত্র দিয়ে তুলনামূলকভাবে বড় আকারের ভাইরাস দেখতে পাওয়া যায়—যেমন গুটিবসন্তের ভাইরাস ভ্যারিওলা। কিন্তু যেসব ভাইরাসের আকার আরো ছোট, অণুবীক্ষণ যন্ত্র দিয়ে সেগুলি দেখা যায় না। সেগুলো দেখার জন্য ব্যবহার করা হলো এক্স-রে। ১৮৯৫ সালে পদার্থবিজ্ঞানী রন্টজেন এক্স-রে আবিষ্কার করার পর পদার্থবিজ্ঞানের পাশাপাশি জীববিজ্ঞানেও অনেক নতুন পথ খুলে যায়। কোয়ান্টাম মেকানিকস এবং বোরের পারমাণবিক তত্ত্ব কাজে লাগিয়ে ১৯১২ সালে পদার্থবিজ্ঞানী ম্যাক্স ফন লু আবিষ্কার করেন যে এক্স-রের তরঙ্গ দৈর্ঘ্য কোনো ক্রিস্টালের ভেতরের পরমাণুগুলোর মধ্যবর্তী দৈর্ঘ্যের সাথে তুলনীয়। অর্থাৎ কোনো ক্রিস্টালে এক্স-রে প্রয়োগ করলে সেই এক্স-রে বিচ্ছুরিত হয়। শুরু হলো এক্স-রে ডিফ্রাকশান পদ্ধতি। এই আবিষ্কারের জন্য ১৯১৪ সালে পদার্থবিজ্ঞানে নোবেল পুরস্কার পান ম্যাক্স ফন লু। পরের বছর এক্স-রে ডিফ্রাকশান ব্যবহার করে ক্রিস্টালের গঠন বিশ্লেষণ করার পদ্ধতি আবিষ্কার করলেন অস্ট্রেলিয়ান পদার্থবিজ্ঞানী স্যার উইলিয়াম হেনরি ব্র্যাগ তাঁর ছেলে লরেন্স ব্র্যাগ। এই আবিষ্কারের জন্য ১৯১৫ সালের পদার্থবিজ্ঞানের নোবেল পুরষ্কার লাভ করেন এই পিতা-পুত্র। এক্স-রের বিচ্ছুরণ ঘটিয়ে ক্রিস্টালের গঠন বিশ্লেষণ করা যায় যে পদ্ধতিতে সেই পদ্ধতিতে জীববিজ্ঞানের অনেককিছুর গাঠনিক বিশ্লেষণ আকার-আকৃতি নির্ণয় করা সম্ভব হয়েছে। ১৯৩৪ সালে আইরিশ পদার্থবিজ্ঞানী জন বার্নেল এবং তাঁর ছাত্রী ডরোথি হজকিন মলিকিউলার বায়োলজিতে এক্স-রে ডিফ্রাকশান প্রয়োগ করে পেপসিনের গঠন বিশ্লেষণ করেন।
 
বার্নেল হজকিনের এক্স-রে ডিফ্রাকশান পদ্ধতি স্ট্রাকচারাল বায়োলজি-র বিকাশে বিশাল ভূমিকা রাখে। এক্স-রে ডিফ্রাকশান পদ্ধতিতে সরাসরি প্রোটিন বা অন্য কোন জৈব পদার্থের অভ্যন্তরীণ ছবি তোলা হয় না, কিন্তু জৈব পদার্থের আণবিক বিন্যাস থেকে বিচ্ছুরিত হয়ে আসা এক্স-রে সিগনালগুলোকে একত্রিত করে পুরো বিন্যাসটি পুনর্গঠন করা হয়। কম্পিউটার প্রযুক্তির উন্নতির সাথে সাথে এক্স-রে ডিফ্রাকশান পদ্ধতির ব্যাপক উন্নতি হয়েছে। এই পদ্ধতিতে জৈব যৌগ বিশ্লেষণ খুব সহজ হয়ে গেছে।
 
১৯৩৩ সালে জার্মান পদার্থবিজ্ঞানী আর্নেস্ট রুশকা এবং ইলেকট্রিক্যাল ইঞ্জিনিয়ার ম্যাক্স নল (Max Knoll) ইলেকট্রন মাইক্রোস্কোপ উদ্ভাবন করেন। সাধারণ মাইক্রোস্কোপে আলোর মাধ্যমে বিবর্ধন ঘটানো হয়। ইলেকট্রন মাইক্রোস্কোপে আলোর কণা ফোটনের পরিবর্তে ইলেকট্রন ব্যবহার করা হয়। ইলেকট্রনও আলোর মত কণা এবং তরঙ্গ উভয় ধর্মই প্রদর্শন করে। ইলেকট্রনের তরঙ্গ দৈর্ঘ্য আলোর তরঙ্গ দৈর্ঘ্যের চেয়ে প্রায় এক হাজার গুণ ছোট। তার মানে হলো স্বাভাবিক মাইক্রোস্কোপে যত ছোট বস্তু দেখা সম্ভব, ইলেকট্রন মাইক্রোস্কোপের সাহায্যে তার চেয়েও এক হাজার গুণ ছোট বস্তু দেখা সম্ভব। ইলেকট্রন মাইক্রোস্কোপ উদ্ভাবিত হবার পর থেকে জীববিজ্ঞানে অণুজীব, ব্যাকটেরিয়া, ভাইরাস ইত্যাদির গঠন নির্ণয় করা অনেকটাই সহজ হয়ে গেল। প্রযুক্তির উন্নতির সাথে সাথে ইলেকট্রন মাইক্রোস্কোপেরও অনেক উন্নতি হয়েছে।
ইলেকট্রন মাইক্রোস্কোপকে প্রধানত দু'ভাগে ভাগ করা যায়—স্ক্যানিং ইলেকট্রন মাইক্রোস্কোপ ট্রান্সমিশন ইলেকট্রন মাইক্রোস্কোপ। স্ক্যানিং ইলেকট্রন মাইক্রোস্কোপে পদার্থের উপর ইলেকট্রন প্রয়োগ করা হয়। ইলেকট্রন পদার্থের মধ্যে মিথস্ক্রিয়ায় সেকেন্ডারি ইলেকট্রন নির্গত হয়। সেই সেকেন্ডারি ইলেকট্রন শনাক্ত করা হয় সংযুক্ত ডিটেক্টরে। সেই ইলেকট্রনগুলোর শক্তি বিশ্লেষণ করে পিক্সেল টু পিক্সেল ডাটা সংগ্রহ করা হয় এবং সেখান থেকে পদার্থের পুরো চিত্র পাওয়া যায়। অন্যদিকে ট্রান্সমিশান ইলেকট্রন মাইক্রোস্কোপে ইলেকট্রনগুলো পদার্থের ভেতর দিয়ে ট্রান্সমিট করে গিয়ে ডিটেক্টরে পৌঁছায়। ট্রান্সমিশানের সময় তার শক্তির যে পরিবর্তন হয়—সেই তথ্য থেকে পিক্সেল টু পিক্সেল ডাটা তৈরি হয়ে পুরো ছবি পাওয়া যায়।
 
ট্রান্সমিশান ইলেকট্রন মাইক্রোস্কোপের ক্ষমতা যতই ভালো হোক না কেন, সেখানে কিছুটা সমস্যা থেকে যায়। সমস্যা হলো ইলেকট্রনের শক্তি অনেক বেশি হওয়াতে পদার্থের ভেতর দিয়ে ইলেকট্রন যাওয়ার সময় রেডিয়েশানের কারণে পদার্থের সূক্ষ্ম গঠনের কিছু পরিবর্তন হয়ে যায়। এই পরিবর্তন রোধ করার জন্য ট্রান্সমিশান ইলেকট্রন মাইক্রোস্কোপের সাহায্যে ক্ষুদ্রাতিক্ষুদ্র পদার্থ দেখার জন্য বিজ্ঞানীরা একটি নতুন পদ্ধতি আবিষ্কার করেন। সেটার নাম ক্রায়োজেনিক ট্রান্সমিশান ইলেকট্রন মাইক্রোস্কোপি। এই পদ্ধতিতে যে নমুনার ছবি তোলা হবে সেই নমুনাকে অত্যন্ত কম তাপমাত্রায় (ক্রায়োজেনিক তাপমাত্রা) ঠান্ডা করা হয়। ফলে এর ভেতর দিয়ে ইলেকট্রন যাবার সময় রেডিয়েশানের ক্ষতি হয় না। এই পদ্ধতি আবিষ্কারের জন্য ২০১৭ সালে রসায়নে নোবেল পুরষ্কার পেয়েছেন জার্মানির জীবপদার্থবিজ্ঞানী জ্যাকুস ডুবোশেট (Jacques Dubochet) ইয়োকিম ফ্রাঙ্ক (Joachim Frank) এবং স্কটিশ জীবপদার্থবিজ্ঞানী রিচার্ড হেনডারসন (Richard Henderson)। বর্তমান করোনা ভাইরাসের আকার আকৃতিও পর্যবেক্ষণ করা হয়েছে ক্রায়োজেনিক ইলেকট্রন মাইক্রোস্কোপির সাহায্যে।
ভাইরাসগুলোকে পূর্ণাঙ্গ জীব বলা যাবে না। অণুজীব বা ব্যাকটেরিয়াও নয় তারা। ভাইরাস নিজে নিজে বেঁচে থাকতে পারে না। বেঁচে থাকার জন্য একটা পোষক শরীর লাগে তাদের। ব্যাকটেরিয়ার চেয়েও অনেক ছোট আকারের হতে পারে ভাইরাস। সবচেয়ে ছোট অণুজীবের সাইজ কত? জীব হতে হলে প্রাণ থাকতে হবে এবং সেই প্রাণের প্রাথমিক উপাদান হলো ডিএনএ, আরএনএ, এমআরএনএ, রাইবোজোম এবং অন্যান্য সব প্রাণরাসায়নিক উপাদান। এই সবগুলো উপাদান কার্যকরভাবে থাকতে হবে এই অণুজীবের শরীরে। তাহলে এগুলো সব থাকার জন্য কমপক্ষে কতটুকু জায়গার দরকার? পরীক্ষা করে দেখা গেছে সবচেয়ে ছোট ব্যাকটেরিয়ার সাইজ ০.২ মাইক্রোমিটার। অর্থাৎ এক মিটারের পঞ্চাশ লক্ষ ভাগের এক ভাগ। তার মানে ৫০ লক্ষ ব্যাকটেরিয়া পাশাপাশি রাখলে এক মিটার লম্বা হবে। কিন্তু এক বর্গ মিটার জায়গায় থাকতে পারবে ২৫ হাজার কোটি ব্যাকটেরিয়া। আর ভাইরাসের সাইজ এর চেয়েও এক হাজার গুণ ছোট। তার মানে এক বর্গ মিটার জায়গায় ২৫০০ কোটি কোটি ভাইরাস থাকতে পারবে। বোঝাই যাচ্ছে কী পরিমাণ অদৃশ্য শক্তির সাথে আমাদের যুদ্ধ করতে হচ্ছে।

saving score / loading statistics ...